903

A New Oxidation State of Gold: The Preparation and some Properties of [AuF₆]⁻⁻ Salts

By KEVIN LEARY and NEIL BARTLETT*

(Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720)

Summary Fluorination of AuF_3 in the presence of excess XeF_6 yields $[Xe_2F_{11}]^+[AuF_6]^-$; this salt interacts with CsF at 110 °C *in vacuo* with displacement of XeF_6 to yield CsAuF₆.

SINCE gold hexafluoride promises¹ to be the most powerfully oxidizing hexafluoride of the third transition series, its synthesis is of interest. Although the highest known established gold fluoride was AuF_{3} ,^{2,3} a structurally ill-

defined material $AuF_{3.6}$ has been obtained by the fluorination,⁴ at 500 °C, of AuF₃. Recently we recognized that the basic and solvent properties of xenon hexafluoride⁵ offered excellent conditions for the promotion of a higher gold oxidation state. The trifluoride (2 mmol), and XeF₂ (12 mmols) were heated (400 °C), in gaseous F₂ (70 mmols at 1000 p.s.i.) for several hours and cooled overnight to 20 °C, when the excess of fluorine and xenon hexafluoride were removed under vacuum. A macrocrystalline mass of pale yellow-green crystals was obtained (m.p. 145-150°). Analysis for xenon indicated the empirical formula F₁₇AuXe₂. This was supported by the crystal data: $F_{17}AuXe_2$, M =782.5, orthorhombic, a = 9.115(2), b = 8.542(3), c =15.726(6), V = 1224 Å³, z = 4, $D_c = 4.24$ g cm⁻³, space group Pnma or $Pna2_1$. The volume of the unit cell, using Zachariason's criterion of 18 Å³ for each F atom⁶ indicates a total of 68 per unit cell. Furthermore, the compound is isomorphous with $[Xe_2F_{11}]^+[MF_6]^-$ (M = Ru, Ir, Pt).⁷ The Raman spectrum of the compound shows the following bands: 661(55), 600(40), 593(58), 586(78), 400(w), 356(w), 290(w), 223(20), 111(10), and 58(12) cm⁻¹. The italicized frequencies are attributable to the $[AuF_6]^-$ and the others show a marked similarity to the bands attributed by Bartlett and Wechsberg⁸ to the cation in the salt $[Xe_{2}F_{11}]^{+}$ $[AsF_6]^-$. The compound is therefore $[Xe_2F_{11}]^+[AuF_6]^-$. A full crystal structure analysis has been undertaken. The existence of quinquevalent gold has, however, been established by the preparation of $CsAuF_{6}$ from the xenon salt.

TABLE. Raman spectra of CsAuF₆ and CsAuF₄ (relative intensities in parentheses, frequencies in cm⁻¹)

$[AuF_6]^-$ modes $v_1(a_{1g})$ $v_2(e_g)$ $v_5(f_{2g})$	CsAuF ₆ 595(66) 520(28) 224(25)	CsAuF 588(98) 561(28) 237(13)	$[\operatorname{Au} F_4]^-$ modes $v_1(a_{1g})$ $v_4(b_{2g})$
$V_5(f_{2g})$	224(25)	237(13) (230(14) \int	$v_3(b_{1g})$

¹ N. Bartlett, Angew. Chem. Internat. Edn., 1968, 7, 433.

² A. G. Sharpe, *J. Chem. Soc.*, 1949, 2901.

^a E. W. B. Einstein, P. R. Rao, J. Trotter, and N. Bartlett, J. Chem. Soc. (A), 1967, 478.
^a N. Bartlett and P. R. Rao, Abstracts of Papers Presented at 154th Meeting Amer. Chem. Soc., 1967, K15.

- ⁵ N. Bartlett, K. Leary, D. Templeton, and A. Zalkin, "The Preparation and Crystal Structure of (XeF₅)₂+PdF₆²⁻", to be published.
 ⁶ W. H. Zachariasen, J. Amer. Chem. Soc., 1948, 70, 2147.
- ⁷ (a) N. Bartlett, F. Einstein, D. F. Stewart, and J. Trotter, Chem. Comm., 1966, 550; (b) N. Bartlett, and F. O. Sladky, J. Amer. Chem. Soc., 1968, 90, 5316.
 - ⁸ N. Bartlett and M. Wechsberg, Z. anorg. Chem., 1971, 385, 5.
 ⁹ D. Babel, Structure and Bonding, 1967, 3, 11.
- ¹⁰ K. Nakamoto, "Infrared Spectra of Inorganic and Co-ordination Compounds", 2nd edition, J. Wiley, New York, 1970.
- ¹¹ F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc. (A), 1969, 2179.

A slight deficiency of CsF mixed with $[Xe_2F_{11}]^+[AuF_6]^$ was heated under dry N2 to 110 °C, at which temperature XeF₆ evolved. The XeF₆ displacement: CsF + $[Xe_2F_{11}]^+$ $[AuF_6]^- \rightarrow 2XeF_6 + CsAuF_6$, was completed under vacuum, (the slight excess of xenon complex sublimed out of the reactor) and a pale yellow solid remained. X-Ray powder photographs established that $\ensuremath{\mathsf{CsAuF}_6}$ is isomorphous with the other CsMF₆ noble metal salts.⁹ Crystal data: CsAuF₆, M = 443.9 rhombohedral, $a = 5.24 \pm 0.01$ Å; $\alpha = 96.5$ $\pm 0.3^{\circ}$, V = 141 Å³, z = 1, $D_c = 5.22$ g cm⁻³. Space group R3. The Raman spectrum of the salt is compared with that of $CsAuF_4$ in the Table. The similarity of the vibrational spectra of AuF_6^- and AuF_4^- is reminiscent of the close similarity of the vibrational spectra of $[Pd(Pt)(hal)_4]^{2-1}$ salts to their related [Pd(Pt)(hal)₆]²⁻ salts.¹⁰ Since the symmetric stretching frequencies of $\mathrm{AuF_4^-}$ and $\mathrm{AuF_6^-}$ are almost identical it is evident that the involvement of the non-bonding Au^{III} valence-electron pair (usually represented as d_{z^2} in the bonding of two more F ligands to form the $[AuF_6]^-$ ion, does not change the strength of the Au-F bond.

In conformity with the antibonding- π character¹ of the low spin d_{t2g}^{6} electron configuration of Au^v, the totally symmetric stretching frequency of $[AuF_6]^-$ is the lowest of the $[MF_6]^-$ species in the series:¹¹ OsF₆⁻, 690; IrF₆⁻, 672; PtF₆⁻, 647; AuF₆⁻, 595 cm⁻¹.

The preparation of AuF_6 will be attempted by electrolysis of the molten xenon salt.

Added in proof. Fluorination of $CsAuF_4$ has yielded CsAuF₆ directly. Also, $O_2 + F_2$ has given $O_2^+[AuF_6]^-$.

This work was supported by the U.S. Atomic Energy Commission.

(Received, 9th June 1972; Com. 987.)